L T P C

NUMERICAL TECHNIQUES and PARTIAL DIFFERENTIAL EQUATIONS (CE and ME)

Learning Objectives:

- ➤ The course is designed to equip the students with necessary mathematical skills and techniques that are essential for an engineering course.
- > The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

	COURSE OUTCOMES	BT	
CO1	Determine the numerical solution of the algebraic and transcendental		
	equations.	1, 2, 3	
CO2	Determine interpolation techniques for data analysis.	1, 2, 3	
CO3	Determining the numerical solutions of the ordinary differential equations.	1, 2, 3	
CO4	Develop the ability to form partial differential equations and solve the partial		
	differential equations of first order.	1, 2, 3	
CO5	Identify / Classify and Solve the Partial differential equations of second order		
	and higher order.	1, 2, 3	

CO - PO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	3	-	3	_	_	_	-	2	-	-	1
2	2	2	-	2	-	-	-	-	2	-	-	1
3	2	3	-	-	-	-	-	-	-	-	-	1
4	2	2	-	1	-	-	-	-	-	-	-	1
5	1	2	-	1	-	-	-	-	-	-	-	1

CO-PSO Mapping

		Cl	ME		
CO	PSO1	PSO2	PSO3	PSO1	PSO2
1	-	-	2	1	-
2	-	-	2	1	-
3	-	-	2	1	-
4	-	-	2	1	-
5	-	-	2	1	-

UNIT I: Iterative methods:

 $Introduction-Bisection\ method-Secant\ method-Method\ of\ false\ position-Iteration\ method-Newton-Raphson\ method$

UNIT II: Interpolation:

Introduction—Finite differences — Forward differences — Backward differences — Central differences — Relations between operators — Newton's forward and backward formulae for interpolation —Interpolation with unequal intervals — Lagrange's interpolation formula

UNIT III: Numerical integration and solution of ordinary differential equations:

Trapezoidal rule – Simpson's 1/3rd and 3/8th rule – Solution of ordinary differential equations by Taylor's series – Picard's method of successive approximations – Euler's method – Runge-Kutta method (second and fourth order).

Unit –IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT V: Linear PDE of higher order and its Applications:

Solutions of Homogeneous linear partial differential equations of higher order. Method of separation of variables, Classification of second order partial differential equations

Applications of PDE: Application of PDE to one-dimensional wave, heat and Two-dimensional Laplace's equation in cartesian coordinates.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. **B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books

- 1. Advanced Engineering Mathematics: Erwin Kreyszig, Wiley India Edition.
- 2. Advanced Engineering Mathematics: Michael Greenberg, Pearson.

Web Link:

- https://nptel.ac.in/courses/111/107/111107105/
- https://nptel.ac.in/courses/111/103/111103021/