

RAGHU ENGINEERING COLLEGE (Autonomous)

(Approved by AICTE, New Delhi & Permanently Affiliated to JNTUGV, Vizianagaram) NBA and NAAC 'A+' grade accredited Institute.

Dakamarri, Bheemili Mandal, Visakhapatnam – 531162, A.P.

Phone: 08922-248001 / 221122/9963981111, www.raghuenggcollege.com

INSTITUTE VISION

Envisioning to be a world class technical institution by synergizing quality education with ethical values. INSTITUTE MISSION

- To encourage training and research in cutting-edge technologies.
- To develop and strengthen strategic links with the industry.
- To kindle the zeal among the students and promote their quest for academic excellence.
- To encourage extra-curricular activities along with good communication skills.

QUALITY POLICY

RAGHU Engineering College underscores ethical values along with innovative teaching through an interactive, activity-based pedagogy; establishes the best of infrastructural facilities, inculcates engineering temper among the students through the use of the latest Information and Communication Technologies, and strives for an efficient, responsive and transparent administration in all areas.

Department of Electronics and Communications Engineering

VISION

To grow into a premier engineering department with excellence in teaching, research, and innovation in the field of electronics and communication engineering at par with the global industrial standards catering to the needs of the stakeholders while keeping up with the advancing technology.

MISSION

- M1: To provide excellence in education, research and public services.
- M2: To provide a creative environment through structured teaching and learning process.
- M3: To impart employability-focused education while imbibing the spirit of entrepreneurship.
- M4: To inculcate self-learning attitude, management skills and professional ethics.

PROGRAMME EDUCTIONAL OBJECTIVES(PEOs)

- PEO 1: **Domain Knowledge:** To have the knowledge and technical skills required to remain productive.
- PEO 2: Communication Skills & Employability: To apply technical knowledge and skills as electronics and communication engineers to provide practical solutions in industrial and governmental organizations.
- PEO 3: Life Long Learning & Social Concern: To achieve success with awareness of entrepreneurship skills and have the ability for lifelong learning by pursuing professional development to meet the emerging and evolving demands for a successful career.

MAPPING OF MISSION STATEMENTS WITH PEOS

MS/PEO	PEO 1	PEO 2	PEO 3
MS 1	3	2	2
MS 2	3	3	2
MS 3	3	2	3
MS4	2	3	3

1-Slight, 2- Moderate, 3- Substantial

PROGR	AM OUTCOMES
Graduates	of Electrical and Electronics Engineering Will:
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyse complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice.

	T
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering
	and management principles and apply these to one's own work, as a member and leader in a
	team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.
PROGR	AM SPECIFIC OUTCOMES (PSOs)
PSO 1: U	nderstand and apply the fundamental concepts of Basic and Engineering Sciences for appropriate
up-skilling	g in the fast-emerging fields of Signal Processing, Image Processing, Communication,
-	ng, VLSI, Embedded Systems, Analog and Digital Technologies to meet the futuristic industrial
achievem	
PSO 2:	Apply latest hardware and software tools to solve complex electronics and communication
	g problems along with analytical skills to derive appropriate solutions in the real time
Submeetin	is providing using their unurytical sking to derive appropriate solutions in the real time

engineering problems along with analytical skills to derive appropriate solutions in the real tim applications across varied business and administrative functions.

Mapping of PEOs with POs and PSOs:

PEO/ POs	PO- 1	PO- 2	PO- 3	PO- 4	PO- 5	PO- 6	PO- 7	PO- 8	РО- 9	PO- 10	PO- 11	PO- 12	PSO- 1	PSO- 2
PEO 1	3	3	3	2	2						1	1	3	1
PEO 2	2	3	3	2			2	2		3			3	3
PEO 3						1	1	1	1	2	1	3	3	1

1-Slight, 2- Moderate, 3- Substantial

Programme	B. Tech & ECE	Sem	Category	L	Т	Р	Credits	
&Branch Prerequisites	Nil	3	Professional Core	3	0	0	3	
Course Objecti								
Boolean 2. To realiz 3. To study 4. To class	rstand the properties functions. te combinational logic and analyze the vario ify and design sequen rstand the concepts of	c circuits o ous logic o tial logic o	design. circuits with HDLs circuits					
Preamble: Course Conten	This course covers the formats, complement realization in SOP minimization process sequential circuits and circuits.	nts and co and POS ss is intro	odes. It also introc form. Boolean al oduced. Design pr	luces the lgebra an rinciples	e basic nd vari of con	gates ous l nbina	and thei ogic gate tional an	
Unit-1	Boolean algebra, lo of Boolean functior		ations, and minin	nization	Contact Hours: 9			
representation of Realization of f	ns and Codes, Represent of real numbers, Law unctions using logic g ng Karnaugh Maps. Combinational Log	ws of Bo gates, Can	oolean Algebra, T oonical forms of Bo	heorems	of Bo unction	olear s, Mi	a Algebra	
binary adder/ su comparator, dat	circuits, Design with b btractor circuit, BCD a a selectors, priority en	adder, car coders, d	ry look- a-head add ecoders, multiplexe	er, binar	y multij iltiplex	plier, ers.	magnitud	
Unit-3	Hardware Descript	tion Lang	guage		Cont	act Ho	ours: 10	
circuits, hierarchelse statement,	Verilog - structural sp hical Verilog Code, V case statement, for lo storage elements, flip unters.	verilog for pop using	r combinational cin storage elements	rcuits - c with CA	onditio D tool	nal oj s-usir	perator, if	

Unit	t- 4	Sequential Logic Circuits	Contact Hours: 9
Basi	c architec	tural distinction between combinational and sequential circu	its, Design procedure,
latch	nes, flip-f	lops, truth tables and excitation tables, timing and trig	gering consideration,
	-	flip-flops, design of counters, ripple counters, synchronous	
John	ison count	er, registers, shift registers, universal shift register.	_
Unit	t-5	Finite State Machines and Programmable Logic	Contact Hours: 8
		Devices	
Туре	es of FSM	, capabilities and limitations of FSM, state assignment, real	lization of FSM using
flip-t	flops, Me	aly to Moore conversion and vice-versa, reduction of state	tables using partition
techi	nique, Des	ign of sequence detector. Types of PLD's: PROM, PAL, PL	Α.
			Total Hours: 45
Text	t Books:		
1	M. Morr	is Mano, "Digital Design", 3rd Edition, PHI. (Unit I, II, IV & V)	
2		Brown and ZvonkoVranesic, "Fundamentals of Digital Logic with	Verilog Design", 3rd
	Edition,	McGraw-Hill (Unit III)	
3	T.R. Pac	manabhan, B Bala Tripura Sundari, Design Through Verilog HDL	, Wiley 2009. (Unit III)
Refe	erence Bo	oks:	
1	Charles	H. Roth, Jr, "Fundamentals of Logic Design", 4th Edition, Jaico I	Publishers.
2		vi and NirajK.Jha, "Switching and Finite Automata Theory, 3rd E ty Press, 2010.	dition, Cambridge
3		Initkar, "Verilog HDL: A Guide to Digital Design and Synthesis"	, 2 nd Edition, Prentice
4	D.P. Lea	ch, A.P. Malvino, "Digital Principles and Applications", TMH, 7t	h Edition.
Web	Referen	- A AA	
1		ww.youtube.com/watch?v=BqP6sVYlrr0	
2	https://w	ww.youtube.com/watch?v=ibQBb5yEDlQ	
3	https://w	ww.youtube.com/watch?v=sUutDs7FFeA	
COU abilit		TCOMES : Upon completion of the course, students shall have	BT Mapped (Highest Level)
	Unde	rstand the properties of Boolean algebra, logic operations, and	L2
CO		techniques for minimization of Boolean functions.	
CO 2		vze combinational logic circuits.	L4
	Unde	rstand the basics of HDLs, program structure and basic language	L2
CO	4	onts of Verilog.	
	Desig	n and analyse the synchronous and asynchronous sequential	L5
CO	/	circuits.	
CO	Class	ify, design and analyse Finite State Machines	L3

Mapping of Cos with POs and PSOs:

COs/	PO	PO	PO	PSO	PSO									
POs	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-1	-2
CO 1	3	2	1	-	-	-	-	-	-	-	-	-	2	-
CO 2	2	3	2	-	-	-	-	-	-	-	-	-	3	-
CO 3	2	3	2	-	-	-	-	-	-	-	-	-	3	-
CO 4	2	3	2	-	-	-	-	-	-	-	-	-	3	-
CO 5	2	3	2	1	-	-	-	-	-	-	-	-	3	-
1 – Slight,														

	ASSESSMENT PATERN - THEORY											
TEST	Remembering (K1)%	Understanding (K2)%	Applying (K3)%	Analyzing (K4)%	Evaluating (K5)%	Creating (K6)%	Total%					
MID-1	20	40	40				100					
MID-2	10	20	40	30			100					
SEE	10	10	60	20			100					
	$*\pm 3\%$ may be varied											