

RAGHU ENGINEERING COLLEGE (Autonomous)

(Approved by AICTE, New Delhi & Permanently Affiliated to JNTUGV, Vizianagaram) NBA and NAAC 'A+' grade accredited Institute.

Dakamarri, Bheemili Mandal, Visakhapatnam – 531162, A.P.

Phone: 08922-248001 / 221122/9963981111, www.raghuenggcollege.com

INSTITUTE VISION

Envisioning to be a world class technical institution by synergizing quality education with ethical values.

INSTITUTE MISSION

- To encourage training and research in cutting-edge technologies.
- To develop and strengthen strategic links with the industry.
- To kindle the zeal among the students and promote their quest for academic excellence.
- To encourage extra-curricular activities along with good communication skills.

QUALITY POLICY

RAGHU Engineering College underscores ethical values along with innovative teaching through an interactive, activity-based pedagogy; establishes the best of infrastructural facilities, inculcates engineering temper among the students through the use of the latest Information and Communication Technologies, and strives for an efficient, responsive and transparent administration in all areas.

Department of Electronics and Communication Engineering

VISION

To grow into a premier engineering department with excellence in teaching, research, and innovation in the field of electronics and communication engineering at par with the global industrial standards catering to the needs of the stakeholders while keeping up with the advancing technology.

MISSION

- M1: To provide excellence in education, research and public services.
- M2: To provide a creative environment through structured teaching and learning process.
- M3:To impart employability-focused education while imbibing the spirit of entrepreneurship.
- M4: To inculcate self-learning attitude, management skills and professional ethics.

PROGRAMME EDUCTIONAL OBJECTIVES (PEOs)

- **PEO 1: Domain Knowledge:** To have the knowledge and technical skills required to remain productive.
- **PEO 2: Communication Skills & Employability:** To apply technical knowledge and skills as electronics and communication engineers to provide practical solutions in industrial and governmental organizations.
- **PEO 3: Life Long Learning & Social Concern:** To achieve success with awareness of entrepreneurship skills and have the ability for lifelong learning by pursuing professional development to meet the emerging and evolving demands for a successful career.

MAPPING OF MISSION STATEMENTS WITH PEOS

MS/PEOs	PEO 1	PEO 2	PEO 3
MS 1	3	2	2
MS 2	3	3	2
MS 3	3	2	3
MS 4	2	3	3

1-Slight, 2-Moderate, 3-Substantial

	PROGRAM OUTCOMES						
	Graduates of Electrical and Electronics Engineering Will:						
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.						
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.						

PO 6	The orginaer and society: Apply reasoning informed by the contextual knowledge to
100	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
PO 7	responsibilities relevant to the professional engineering practice.
PU /	Environment and sustainability : Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
PO 8	knowledge of, and need for sustainable development.
PU 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	Understand and apply the fundamental concepts of Basic and Engineering Sciences for
appropria	ate up-skilling in the fast-emerging fields of Signal Processing, Image Processing,
Commun	nication, Networking, VLSI, Embedded Systems, Analog and Digital Technologies to
meet the	futuristic industrial achievements.
PSO 2: A	apply latest hardware and software tools to solve complex electronics and communication
-	ing problems along with analytical skills to derive appropriate solutions in the real time ons across varied business and administrative functions.
application	ons across varied business and administrative functions.

Mapping of PEOs with POs and PSOs

PEO/P O	PO -1	PO -2	PO -3	PO -4	PO -5	PO -6	PO -7	PO -8	PO -9	PO -10	PO -11	PO -12	PSO -1	PSO -2
PEO 1	3	3	3	2	2						1	1	3	1
PEO 2	2	3	3	2			2	2		3			3	3
PEO 3						1	1	1	1	2	1	3	3	1

1-Slight, 2-Moderate, 3-Substantial

Programme &Branch	B.Tech & ECE	Sem	Category	L	Т	Р	Credits
Prerequisites	LinearAlgebraandCalculus,DifferentialEquations& VectorCalculus	3	Engineering Science	2	0	0	2
variable 2. To stud 3. To expl on mult	vide mathematical background	ables. dom va	riables and ope	ration	s that n	nay be	performed
Preamble:	w the concepts of Noise in Com This course provides the fun advanced topics in the field, in systems, and machine learn foundation for modeling and an processes extend these ideas framework for understanding p nts:	ndamen ncludin ing. P nalyzin to mo	ntal tools and g signal process robability theo g systems affec del sequences	sing, c ory fo ted by of ran	orms the random e	nication he ma mness.	ns, control thematical Stochastic
Unit-1	Probability & Random Varia	able			Conta	act Hou	ırs: 8
Discrete and O Probability, Co Random Varia	roduced through Sets and Rela Continuous Sample Spaces, E onditional Probability, Total I ble: Definition, Conditions for Mixed Random Variable. Distribution & Density Fun One Random Variable	vents, Probab r a Fu	Probability De ility, Bay's Th nction to be a	efinitio neoren Ranc	ons an n, Inde lom Va	d Axio	oms, Joint nt Events. Discrete,
Rayleigh, Meth and their Prope Expected Value Central Momen	e of a Random Variable, Function nts, Variance and Skew, Cheby nction, Transformations of a I	Event, C on of a chev's	Conditional Dis Random Variab Inequality, Cha	tributi de, Mo aracter	on, Co oments ristic F	ndition about t unctior	al Density the Origina , Moment

Uni	it-3	Multiple Random Variables and Operations	Contact Hours: 9
N/I	ltinla Dan	dom Variables Jaint Distribution and density Eurot	ions and their Droparties
		dom Variables: Joint Distribution and density Funct	
	-	ribution Functions, Conditional Distribution and Dens	
		istribution and Density, Statistical Independence. Sum o	
		l Random Variables, Central Limit Theorem (proof not re	± /
_		Multiple Random Variables: Expected Value of a Fund	
Join	nt Moments	s about the Origin, Joint Central Moments, Joint Chara	cteristic Functions, Jointly
Gau	issian Rand	lom Variables, properties.	
Uni	t-4	Stochastic Processes	Contact Hours: 9
Ten	nporal Cł	haracteristics: The Stochastic Process Concept, Cla	assification of Processes
	-	and Nondeterministic Processes, Distribution and Dens	
		d Statistical independence. First-Order Stationary Process	•
		arity, Nth -order and Strict-Sense Stationarity, Time	
		n Function and its Properties, Cross-Correlation Function	
		acteristics: Power Spectrum: Properties, Relationship be	-
			tween I ower Spectrum and
		n Function, Cross-Power Density Spectrum, Properties.	Contract Horney 9
Uni	11-5	Noise Sources	Contact Hours: 8
Intr	oduction C	lassification White noise or White Gaussian noise Resist	tive/Thermal Noise Source
Arb	itrary Noise	Classification, White noise or White Gaussian noise, Resist e Sources, Effective Noise Temperature, Noise equivalent ge Noise Figure of cascaded networks, Narrow band nois	bandwidth, Average Noise
Arb	itrary Noise		bandwidth, Average Noise e and its properties.
Arb	itrary Noise	e Sources, Effective Noise Temperature, Noise equivalent	bandwidth, Average Noise e and its properties.
Arb Figu	itrary Noise	e Sources, Effective Noise Temperature, Noise equivalent	bandwidth, Average Noise e and its properties.
Arb Figu Tex	itrary Noise ures, Avera A Books:	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois	bandwidth, Average Noise e and its properties. Total Hours: 43
Arb Figu	itrary Noise ures, Avera A Books: Probabil	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois	bandwidth, Average Noise e and its properties. Total Hours: 43
Arb Figu Tex 1	itrary Noise ures, Avera t Books: Probabil McGraw	e Sources, Effective Noise Temperature, Noise equivalent ge Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001.	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata
Arb Figu Tex 1	itrary Noise ures, Avera t Books: Probabil McGraw Probabil	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata
Arb Figu Tex	itrary Noise ures, Avera t Books: Probabil McGraw Probabil	e Sources, Effective Noise Temperature, Noise equivalent ge Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001.	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata
Arb Figu Tex 1 2	itrary Noise ures, Avera tt Books: Probabil McGraw Probabil S.Unnik	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and
Arb Figu Tex 1	itrary Noise ures, Avera tt Books: Probabil McGraw Probabil S.Unnik	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana arishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and
Arb Figu Tex 1 2 3	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana arishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Redd edition.	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and
Arb Figu Tex 1 2 3	itrary Noise ures, Avera tt Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana arishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Redd edition.	bandwidth, Average Noise e and its properties. Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press,
Arb Figu Tex 1 2 3 Ref 1	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana trishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, o, BS Publications.
Arb Figu Tex 1 2 3 Ref	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana rishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, o, BS Publications.
Arb Figu Tex 1 2 3 Ref 1 2	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil and Johr	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Perv v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana arishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr n W. Woods, Pearson Education, Third Edition.	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, , BS Publications. Focessing – Henry Stark
Arb Figu Tex 1 2 3 Ref 1 2	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil and Johr	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana rishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, , BS Publications. Focessing – Henry Stark
Arb Figu Tex 1 2 3 Ref 1 2 3	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil and Johr	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana rishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr n W. Woods, Pearson Education, Third Edition. lity Theory and Random Processes – P. Ramesh Babu, Me	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, , BS Publications. Focessing – Henry Stark
Arb <u>Figu</u> Tex 1 2 3 Ref 1 2 3 We	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil and John Probabil	e Sources, Effective Noise Temperature, Noise equivalent age Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Per v Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana rishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr n W. Woods, Pearson Education, Third Edition. lity Theory and Random Processes – P. Ramesh Babu, Me	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, , BS Publications. Focessing – Henry Stark
Arb Figu Tex 1 2 3 Ref 1 2 3 We 1	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil and John Probabil and John Probabil	e Sources, Effective Noise Temperature, Noise equivalent ge Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Perv V Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana trishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. oks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr n W. Woods, Pearson Education, Third Edition. lity Theory and Random Processes – P. Ramesh Babu, Merver ces: mlinecourses.nptel.ac.in/noc21_ma66/preview	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, b, BS Publications. cocessing – Henry Stark cGraw Hill, 2015.
Arb Figu Tex 1 2 3 Ref 1 2 3	itrary Noise ures, Avera t Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e erence Boo Probabil and John Probabil and John Probabil b Reference	e Sources, Effective Noise Temperature, Noise equivalent ige Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Perv Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana trishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. bks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr n W. Woods, Pearson Education, Third Edition. lity Theory and Random Processes – P. Ramesh Babu, Mer ces: mlinecourses.nptel.ac.in/noc21_ma66/preview rew.mit.edu/courses/res-6-012-introduction-to-probability	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, b, BS Publications. cocessing – Henry Stark cGraw Hill, 2015.
Arb Figu Tex 1 2 3 Ref 1 2 3 We 1	itrary Noise ures, Avera Et Books: Probabil McGraw Probabil S.Unnik Probabil Fourth e Ference Boo Probabil and John Probabil b Reference https://o 2018/res	e Sources, Effective Noise Temperature, Noise equivalent ge Noise Figure of cascaded networks, Narrow band nois lity, Random Variables & Random Signal Principles – Perv V Hill, Fourth Edition, 2001. lity, Random Variables and Stochastic Processes – Athana trishnan, Prentice Hall of India, Fourth Edition, 2002. lity theory and stochastic process – Y. Mallikarjuna Reddy edition. oks: lity Theory and Stochastic Processes – B. Prabhakara Rao lity and Random Processes with Applications to Signal Pr n W. Woods, Pearson Education, Third Edition. lity Theory and Random Processes – P. Ramesh Babu, Merver ces: mlinecourses.nptel.ac.in/noc21_ma66/preview	bandwidth, Average Noise <u>e and its properties.</u> Total Hours: 43 yton Z. Peebles, Tata asios Papoulis and y, Universities Press, b, BS Publications. cocessing – Henry Stark cGraw Hill, 2015. -spring-

	SE OUTCOMES: ompletion of the course, students shall have ability to	BT Mapped (Highest Level)
CO 1	Compute simple probabilities using an appropriate sample space.	L3
CO 2	Compute probabilities and expectations from probability density functions.	L3
CO 3	Translate one random variable to multiple random variables	L2
CO 4	Determine the Spectral and temporal characteristics of Stochastic processes	L3
CO 5	Understand the concepts of Noise in Communication systems.	L2

Mapping of Cos with POs and PSOs:

COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
S	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-1	-2
CO 1	3	3	1	-	-	-	-	-	-	-	-	-	2	-
CO 2	3	3	1	-	-	-	-	-	-	-	-	-	2	-
CO 3	3	3	1	-	-	-	-	-	-	-	-	-	2	-
CO 4	3	3	1		-	-	-	-	-	-	-	-	2	-
CO 5	2	2	-		-	-	-	-	-	-	-	-	1	-
1 – Slight,	2 - N	Iodera	ite, 3	– Sub	stantia	ıl								

ASSESSMENT PATERN - THEORY

TEST	Remembering (K1)%	Understanding (K2)%	Applying (K3)%	Analyzing (K4)%	Evaluating (K5)%	Creating (K6)%	Total%
MID-1	20	40	40				100
MID-2	10	10	40	40			100
SEE	15	15	30	40			100
*± 3% n	nay be varied						