

RAGHU ENGINEERING COLLEGE (Autonomous)

(Approved by AICTE, New Delhi & Permanently Affiliated to JNTUGV, Vizianagaram) NBA and NAAC 'A+' grade accredited Institute.

Dakamarri, Bheemili Mandal, Visakhapatnam – 531162,A.P. Phone: 08922-248001 www.raghuenggcollege.com

INSTITUTE VISION

"Envisioning to be a world class technical institution by synergizing quality education with ethical values"

INSTITUTE MISSION

- To encourage training and research in cutting-edge technologies.
- To develop and strengthen strategic links with the industry.
- To kindle the zeal among the students and promote their quest for academic excellence.
- To encourage extra-curricular activities along with good communication skills.

QUALITY POLICY

"RAGHU Engineering College underscores ethical values along with innovative teaching through an interactive, activity-based pedagogy; establishes the best of infrastructural facilities, inculcates engineering temper among the students through the use of the latest Information and Communication Technologies, and strives for an efficient, responsive and transparent administration in all areas"

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION

"To produce Electrical and Electronics Engineers through quality education with exposure to state of art technology and innovation with ethical values"

MISSION

- M1 : Empowering students and professionals with state-of-art knowledge and Technological skills.
- M2 : To prepare students for higher studies and entrepreneurship.
- M3 : To impart essential skills of leadership, teamwork, communication and ethics among the students.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

• **PEO 1**:

Domain Knowledge:

Graduates will have knowledge in basic science, mathematical tools and fundamental engineering stream with contemporary problem solving, critical analysis in Electrical and Electronics Engineering and its allied areas.

• **PEO 2**:

Communication Skills & Employability:

Graduates will have careers in the diversified sectors of electrical power industry, software industries and also encouraged for higher education and research.

• PEO 3:

Life Long Learning & Social Concern:

Graduates will be able to communicate effectively, adopt lifelong learning act with integrity and have inter personal skills needed to engage in, lead and nurture diverse teams with commitment to their ethical and social responsibilities.

MS/PEO	PEO 1	PEO 2	PEO 3
M1	3	3	2
M2	2	2	3
M3	2	3	2

MAPPING OF MISSION STATEMENTS WITH PEOS

1-Slight, 2- Moderate, 3- Substantial

PROGRAMME OUTCOMES

Graduates of Electrical and Electronics Engineering Will:

Siddude	The effect and Electione's Engineering with						
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.						
PO 2	Problem analysis:						
	Identify, formulate, review research literature, and analyze complex engineering problems						
	reaching substantiated conclusions using first principles of mathematics, natural sciences, and						
	engineering sciences.						
PO 3	Design/development of solutions:						
	Design solutions for complex engineering problems and design system components or processes that						
	meet the specified needs with appropriate consideration for the public health and safety, and the						
	cultural, societal, and environmental considerations.						
PO 4	Conduct investigations of complex problems:						
	Use research-based knowledge and research methods including design of experiments, analysis and						
	interpretation of data, and synthesis of the information to provide valid conclusions.						
PO 5	Modern tool usage:						
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools						
	including prediction and modelling to complex engineering activities with an understanding of the						
	limitations.						

PO 6	The eng	ineer a	and soo	eietv:										
	0			•	ov the	contex	tual kr	nowled	ge to a	issess	societal.	health.	safety, le	gal and
			•		•				•				ering pract	•
PO 7	Environment and sustainability:													
_	Understand the impact of the professional engineering solutions in societal and environmental													
	contexts, and demonstrate the knowledge of, and need for sustainable development.													
PO 8	Ethics:													
100		thical	princip	oles an	d com	mit to	profe	ssional	ethics	s and	responsi	bilities	and norm	s of the
	engineer						1				I			
PO 9	Individu													
			•		indiv	idual,	and a	is a n	nember	or le	eader ir	n divers	e teams,	and in
DO 10	multidise			ngs.										
PO 10	Commu												•	
				•	-	•		•			•	•	nmunity a	
	-	-	-		-			-				-	ports and	design
	documer				-		ns, and	l give a	nd rece	eive cle	ar instru	ictions.		
PO 11	Project	0												
				-			-	-	-		-	-	nciples an	~ ~ •
						n mem	iber a	nd lea	der in	a tea	am, to	manage	projects	and in
	multidise	•	•	ronmer	nts.									
PO 12	Life-lon				. 1	.1		1	1 .1.			• 1	1 . 11	· C 1
	learning					-	.		•	to en	gage in	indepen	dent and l	ite-long
PROGR	•						•	Inalige	•					
PSO 1: 0						<u> </u>)	n tha	madua	tag	ha ahla	to omnir i	achmical
knowledge			•					•		0				
solving rea		•		naruw	ale a	sonwa		s relation		lectrica	ai and E	lectioni	es Engine	ering for
PSO 2: 0	-			ion of	tha D) Taal	• (EE	E) Dre	~~~~	the or	advatas		abla ta	analyza
compreher			-				· ·	-	•	•				•
· ·			-			•	•			ety of	enginee	ring app	blications	and thus
demonstra	÷.						ietai w	enden	ıg.					
MAPPINO PEO/PO		205 M PO-	PO-	POS A PO-	ND P PO-	<u>808:</u> PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-1	PSO-2
FEU/FU	1	2	3	4	5	6	7	8	9	10	11	12	130-1	130-2
PEO 1	3	3	3	3		-				-			3	3
						3	3	3	3	3	3		2	2
PEO 2							-						_	

PEO 31-Slight,2- Moderate,3- Substantial

2302104 - POWER SYSTEMS – I

(Only for EEE)										
Programme & Branch	B.Tech & EEE	Sem	Category	L	Т	Р	Credit			
Prerequisites	Electrical Circuit Analysis – I Electrical Circuit Analysis – II	4	PC	3	0	0	3			

Course Objectives:

- 1. To study the principle of operation of different components of a hydro, thermal and nuclear power stations
- 2. To study construction and operation of different components of an Air and Gas Insulated substations
- 3. To study regarding the DC and AC distribution systems
- 4. To study different types of load curves and tariffs applicable to consumers.
- 5. To study the concept of illumination and its applications

Preamble:	The aim of this course is to allow the students to understand the concepts of the							
	generation, distribution and utilization of electrical power system							
Course Contorter								

Course Contents:

Hydroelectric Power Stations:

Selection of site, general layout of a hydroelectric power plant with brief description of major components and principle of operation

Thermal Power Stations:

Selection of site, general layout of a thermal power plant. Brief description of components: boilers, super heaters, economizers and electrostatic precipitators, steam turbines: impulse and reaction turbines, condensers, feed water circuit, cooling towers and chimney.

Nuclear Power Stations:

Location of nuclear power plant, working principle, nuclear fission, nuclear fuels, nuclear chain reaction, nuclear reactor components: moderators, control rods, reflectors and coolants, types of nuclear reactors and brief description of PWR, BWR and FBR. Radiation: radiation hazards and shielding, nuclear waste disposal.

Unit-2	Substations	Contact Hours: 9
Air Insulated	Substations – indoor & outdoor substations, substations layo	uts of 33/11 kV showing the
location of all	the substation equipment. Bus bar arrangements in the sub-site	tations: simple arrangements
like single bus	bar, sectionalized single bus bar, double bus bar with one an	d two circuit breakers, main

and transfer bus bar system with relevant diagrams. **Gas Insulated Substations (GIS)** – advantages of gas insulated substations, constructional aspects of GIS, comparison of air insulated substations and gas insulated substations.

Unit-3	Distribution Systems	Contact Hours: 9								
Classification	Classification of Distribution Systems - Comparison of DC vs AC and Under-Ground vs Over Head									
Distribution Systems- Requirements and Design Features of Distribution Systems. Design										
Considerations	of Distribution Feeders: Radial and Ring Types of Primar	ry Feeders, Voltage Levels,								
Feeder Loading	Feeder Loading, Basic Design Practice of the Secondary Distribution System. Voltage Drop Calculations									
(Numerical Problems) In A.C. Distributors for The Following Cases: Power Factors Referred to										
Receiving End	Receiving End Voltage and With Respect to Respective Load Voltages									

Unit-4Economic Aspects & TariffContact Hours: 9Economic Aspects – load curve, load duration and integrated load duration curves, discussion on
economic aspects: connected load, maximum demand, demand factor, load factor, diversity factor, plant
capacity factor and plant use factor, base and peak load plants.Tariff MethodsCosts of generation and their division into fixed semi-fixed and running costs

Tariff Methods– Costs of generation and their division into fixed, semi-fixed and running costs, desirable characteristics of a tariff method, tariff methods: simple rate, flat rate, block- rate, two-part, three–part, and power factor tariff methods.

Unit-5IlluminationContact Hours: 9Introduction, terms used in illumination–Laws of illumination–Polar curves–Integrating sphere–
Lumens, Lux meter–Discharge lamps. Comparison between tungsten filament lamps and fluorescent
tubes–Basic principles of light control – Types and design of lighting and flood lighting – LED lighting,
principle of operation, street lighting and domestic lighting – Conservation of energy.

Total Hours: 45

-	
Te	xt Books:
1	Electrical Power Systems – Wadhwa C.L , Eighth Edition, 2022, New Age International (P) Ltd.
2	I.J. Nagarath & D.P. Kothari, Power System Engineering, McGraw-Hill Education, 3 rd Edition, 2019.
3	C.L.Wadhwa, Generation, Distribution and Utilization of Electrical Energy, New Age International Publishers, 6 th Edition, 2018.
Re	ference Books:
1	Turan Gonen, Electric Power Distribution System Engineering, McGraw-Hill, 3 rd edition 2014.
2	Turan Gonen, Electric Power Transmission System Engineering, Willey & Sons, 3 rd edition 2014.
W	eb References :
1	https://nptel.ac.in/courses/108102047

Course Outcomes:

Upon co	ompletion of the course, students shall have ability to	BT Mapped (Highest Level)						
CO 1	D1 Understand the different types of power plants, operation of hydroelectric, thermal and nuclear							
CO 2	Describe the different components of air and gas insulated substations	L2						
CO 3	Discuss the various types of distribution systems and analyze for both DC and AC systems	L3						
CO 4	Analyze different economic factors of power generation and tariffs	L3						
CO 5	Discuss regarding the illumination and the laws governing the illumination	L2						

Mapping of Cos with POs and PSOs

COs/	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3										3	2
CO 2	3	2		2									3	2
CO 3	3	3			2	2							3	2
CO 4	2	2	1	1									2	1
CO 5	3	2	2		2								3	2
	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

Assessment Pattern - Theory											
TEST	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total%				
Mid-1	12	8	80				100				
Mid-2	12	8	80				100				
SEE	12	8	80				100				
	$* \pm 3\%$ May be varied										