

RAGHU ENGINEERING COLLEGE (Autonomous)

(Approved by AICTE, New Delhi & Permanently Affiliated to JNTUGV, Vizianagaram) NBA and NAAC 'A+' grade accredited Institute.

Dakamarri, Bheemili Mandal, Visakhapatnam – 531162,A.P. Phone: 08922-248001 www.raghuenggcollege.com

INSTITUTE VISION

"Envisioning to be a world class technical institution by synergizing quality education with ethical values"

INSTITUTE MISSION

- To encourage training and research in cutting-edge technologies.
- To develop and strengthen strategic links with the industry.
- To kindle the zeal among the students and promote their quest for academic excellence.
- To encourage extra-curricular activities along with good communication skills.

QUALITY POLICY

"RAGHU Engineering College underscores ethical values along with innovative teaching through an interactive, activity-based pedagogy; establishes the best of infrastructural facilities, inculcates engineering temper among the students through the use of the latest Information and Communication Technologies, and strives for an efficient, responsive and transparent administration in all areas"

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION

"To produce Electrical and Electronics Engineers through quality education with exposure to state of art technology and innovation with ethical values"

MISSION

- M1 : Empowering students and professionals with state-of-art knowledge and Technological skills.
- M2 : To prepare students for higher studies and entrepreneurship.
- M3 : To impart essential skills of leadership, teamwork, communication and ethics among the students.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

• **PEO 1:**

Domain Knowledge:

Graduates will have knowledge in basic science, mathematical tools and fundamental engineering stream with contemporary problem solving, critical analysis in Electrical and Electronics Engineering and its allied areas.

• **PEO 2**:

Communication Skills & Employability:

Graduates will have careers in the diversified sectors of electrical power industry, software industries and also encouraged for higher education and research.

• **PEO 3**:

Life Long Learning & Social Concern:

Graduates will be able to communicate effectively, adopt lifelong learning act with integrity and have inter personal skills needed to engage in, lead and nurture diverse teams with commitment to their ethical and social responsibilities.

MAPPING OF MISSION STATEMENTS WITH PEOS

MS/PEO	PEO 1	PEO 2	PEO 3
M1	3	3	2
M2	2	2	3
M3	2	3	2

1-Slight, 2- Moderate, 3- Substantial

PROGR	AMME OUTCOMES							
Graduates	Jraduates of Electrical and Electronics Engineering Will:							
PO 1	Engineering knowledge :							
	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis:							
	Identify, formulate, review research literature, and analyze complex engineering problems							
	reaching substantiated conclusions using first principles of mathematics, natural sciences, and							
	engineering sciences.							
PO 3	Design/development of solutions:							
	Design solutions for complex engineering problems and design system components or processes that							
	meet the specified needs with appropriate consideration for the public health and safety, and the							
	cultural, societal, and environmental considerations.							
PO 4	Conduct investigations of complex problems:							
	Use research-based knowledge and research methods including design of experiments, analysis and							
	interpretation of data, and synthesis of the information to provide valid conclusions.							
PO 5	Modern tool usage:							
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools							
	including prediction and modelling to complex engineering activities with an understanding of the							
	limitations.							

PO 6	The engineer and society:													
	Apply re	easonir	ng info	rmed t	by the	contex	tual kr	owled	ge to a	issess	societal	, health,	safety, le	egal and
	cultural	issues a	and the	conse	quent r	respons	ibilitie	s relev	ant to tl	he prof	essional	enginee	ering pract	ice.
PO 7	Environment and sustainability:													
	Understand the impact of the professional engineering solutions in societal and environmental													
	contexts, and demonstrate the knowledge of, and need for sustainable development.													
PO 8	Ethics:													
	Apply ethical principles and commit to professional ethics and responsibilities and norms of the													
	engineering practice.													
PO 9	Individual and team work:													
	Function	effec	tively	as an	indiv	vidual,	and a	is a n	nember	or l	eader ii	n divers	e teams,	and in
DO 10	multidisciplinary settings.													
PO 10	Communication:													
	Communicate effectively on complex engineering activities with the engineering community and with													
	society a	it large,	, such a	s, bein	g able f	to com	prehen	d and w	rite eff	tective	reports a	and desig	gn docume	entation,
	make eff	ective	presen	tations	, and g	ive and	receiv	e clear	instruc	tions.				
PO 11	Project	manag	gement	and fi	nance:									
	Demons	trate ki	nowled	ge and	under	standin	g of th	e engii	neering	and n	nanagen	nent prin	nciples an	d apply
	these to	one's c	own wo	ork, as	a mem	ber and	d leade	r in ate	eam, to	manag	e projec	ets and in	n multidisc	ciplinary
	environn	nents.												
PO 12	Life-lon	g learı	ning:											
	Recogni	ze the	need f	or, and	l have	the pro	eparati	on and	ability	to en	gage in	indepen	dent and l	ife-long
DDOCD	learning	in the	broades	st conte	ext of t	echnol		change	•					
PROGRA		SPEC				LS (PS	US)		.1	1				
PSO 1: Or	1 success	ful con	npletio	n of th	ne B. T	l'ech. (I	EEE) F	rogran	n, the g	graduat	tes will	be able	to apply	technical
knowledge	and usag	ge of n	nodern	hardw	are &	softwa	re tool	s relate	ed to E	lectrica	al and E	lectron	cs Engine	ering for
solving rea	l world p	roblen	18.											
PSO 2: On	successf	ul com	pletion	of the	B. Tec	h. (EEl	E) Prog	gram, th	ne grad	uates w	vill be ab	ole to ana	alyse, com	prehend,
design & d	levelop E	Electric	al subs	ystems	s/systei	ms for	a varie	ty of e	enginee	ring ap	plicatio	ns and t	hus demo	nstrating
profession	al ethics a	and cor	ncern fo	or socie	etal we	llbeing	.							
MAPPINC	G OF PE	COS W	ITH	POS A	ND F	SOS:	T	1	T	1				
PEO/POs	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-1	PSO-2
DEO 1	3	2	3	4	3	0	/	ð	у 	10	11	12	3	3
ILUI	5	5	5	5		2	2	2	2	2	2		3	3
PEO 2						5	5	5	5	5	5		2	2

PEO 31-Slight,2- Moderate,3- Substantial

2302106 - INDUCTION AND SYNCHRONOUS MACHINES

(for EEE only)										
Programme & Branch	B.Tech & EEE	Sem	Category	L	Т	Р	Credit			
Prerequisites	 23ES104: Basic Electrical and Electronics Engineering. 23ES204: Electrical and Electronics Engineering Workshop Lab 23ES2101: Electrical Circuits Analysis – I 23ES2201: 	0	0	3						
	Electrical Circuits Lab									
Course Objecti	ves:									
 To impart the basic knowledge on principle of operation and Classification of induction and synchronous machines To provide working knowledge on how to develop Phasor Diagrams and Equivalent Circuits for induction and synchronous machines. To develop problem solving skills for calculation of Generated EMF, Torque, Speed, Losses, Efficiency of induction and synchronous machines To Analyze performance characteristics of induction and synchronous machines. To Identify applications of induction and synchronous machines in Domestic, Commercial, Industrial, Electric Traction. Preamble: This course covers topics on 3-Phase Induction Motor and Synchronous Machines which have wide application in power systems. The main aim of the course is to provide a detailed analysis of operation and performance of 3-Phase Induction Motor, and Synchronous Machines. In addition, it also covers voltage regulation and parallel operation of synchronous generators. 										
Unit-1	3-Phase Induction M	lotors			Co	ntac	t Hours: 9			
Production of Rotating Magnetic Field, Basic Principle of Operation, Constructional Details, Types, Synchronous Speed, Slip, Rotor Emf and Rotor Frequency, Rotor current and Power factor at standstill and during running conditions, Emf Equation, Phasor Diagram, Equivalent circuit, Torque equation, expressions for maximum torque and starting torque, torque-slip characteristics.										
Unit-2	Performance of 3-Phase ind	uction	motors		C	onta	ct Hours: 9			
Losses, Power Stages, Power flow diagram, Rotor power input, Rotor copper loss and rotor output power and their inter-relationship, mechanical power developed, Efficiency. Double cage and Deep bar rotors, Induction Generator Operation. No load, Brake test and Blocked rotor tests, circle diagram for predetermination of performance- methods of starting, starting current and torque calculations, speed control of induction motor with V/f control method, Crawling and Cogging,										
Unit-3	Unit-3 Single- Phase Motors Contact Hours: 9									
Double Revolving Field theory, Constructional Features, Torque Slip Characteristics, Equivalent circuit, starting methods: Resistance Split Phase, capacitor start, capacitor star and capacitor run, two value capacitor star and capacitor run induction motors, shaded pole, AC Series Motor.										

Unit	-4 Synchronous Generator	Contact Hours: 9								
Principl	Principle of Operation, Constructional details, Types of Rotors, Distribution Factor, Pitch Factors, E.M.F									
Equation	Equation, Synchronous Reactance, Phasor Diagrams, Equivalent Circuit, Armature Reaction, Operating									
characteristics, Voltage Regulation by Synchronous Impedance method, MMF method and Potier triangle										
method,	method, Two Reaction Theory, Determination of Direct and Quadrature axis reactance using Slip Test,									
Necessi	Necessity of Parallel operation, conditions for Parallel operation, Procedure for parallel operation.									
Unit	Unit-5 Synchronous Motor Contact Hours: 9									
Principl	e of Operation, Methods of Starting. Phasor diagram, Equivalent Circuit, I	Effect of Excitation on								
current	and power factor, Hunting and its suppression. Synchronous condenser and	Applications.								
		Total Hours: 45								
Text Bo	ooks:									
1 E 2	lectrical Machinery by Dr. P S Bimbhra, Fully Revised edition, Khanna Pu 021	blishers, New Delhi,								
2 P	erformance and analysis of AC machines by M.G. Say, CBS, 2002.									
Referen	ce Books:									
1 El	1 Electrical Machines by D. P.Kothari, I.J. Nagarth, McGraw Hill Publications, 5th edition, 2017.									
2 Tł	neory & Performance of Electrical Machines by J.B.Gupta, S.K.Kataria& S	ons,2013.								
Web Re	eferences:									
1 n	ptel.ac.in/courses/108/105/108105131									
2 h	ttps://nptel.ac.in/courses/108106072									
Course	Outcomes:	BT Mapped								
Upon co	ompletion of the course, students:	(Highest Level)								
CO 1	will have basic knowledge on principle of operation and Classification of induction and synchronous machines.	L1								
CO 2	Can develop Phasor Diagrams and Equivalent Circuits for induction									
	and synchronous machines.	L1								
	will have problem solving skills for calculation of Generated EMF,									
CO 3	Torque, Speed, Losses, Efficiency of induction and synchronous	L2								
	machines.									
CO 4	can Analyze performance characteristics of induction and synchronous machines.	L3								
CO 5	can identify applications of induction and synchronous machines in Domestic, Commercial, Industrial, Electric Traction.	L3								

Mapping of Cos with POs and PSOs

COs/POs	PO	PO	PO	PSO	PSO									
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-1	-2
CO 1	2	2											1	1
CO 2	1	2											1	1
CO 3	1	2											1	1
CO 4	1	2											1	1
CO 5	1	2											1	1
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

Assessm	Assessment Pattern - Theory											
TEST	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
IESI	(K1)%	(K2)%	(K3)%	(K4)%	(K5)%	(K6)%	%					
Mid-1	9	12	79				100					
Mid-2	9	12	79				100					
SEE	10	10	80				100					
	*± 3% may be varied											