II Year II Semester	L	Т	Р	С
Code: 23ES112	3	0	0	3

Course Objectives:

To learn basic concepts of semiconductor physics and working of Diode with its applications

ANALOG CIRCUITS

- 1. To know the basics of BJT, FET, MOSFET and other transistors
- 2. To acquire the knowledge of the biasing and stabilization concepts of BJT and FET
- 3. To understand the working, analysis and design of transistor amplifier circuits at low frequencies
- 4. To design and analyze different Multivibrator circuits.

Course Outcomes:

A student who successfully fulfils this course requirement will be able to:

- 1. Apply the basic concepts of semiconductor and to understand the formation and
- 2. characteristics of PN Junction Diode with relevant applications
- 3. Understand the construction, working and characteristics of BJT, FET, MOSFET and other transistors
- 4. Know the need of various biasing techniques for BJT and FET, and analyze stabilization concepts with necessary expressions.
- 5. Analyze small signal, low frequency transistor amplifier circuits using BJT and FET in different configurations.
- 6. Design and analyze different multivibrator circuits.

UNIT-I: PN Junction Diode

Semiconductors and Metals – Classification using Energy gap, Mobility and Conductivity, Intrinsic and Extrinsic Semiconductors, Charge Densities in Semiconductors, Fermi level in semiconductors, Drift and Diffusion Currents. Formation of P-N Junction, Energy Band structure of PN Junction Diode, Diode Current Equation, V-I Characteristics of Diode, Temperature Dependence on V-I Characteristics, Diode Resistances, Diffusion and Transition Capacitances. Diode Applications – Half-Wave and Full-Wave Rectifiers, Clippers and clampers

UNIT-II: Transistors

Bipolar Junction Transistor – Types, Symbols and Operation, Transistor Current Components, Transistor Equation, Relation among α , β , and γ , Transistor as an Amplifier, Transistor Configurations and Characteristics – CB, CE and CC, Early effect, Transistor as a switch, Transistor switching times, Punch/Reach through, Ebers-Moll Model, FET – Construction and operation of N- and P-channel FETs, characteristic parameters and I_{DSS}, MOSFET – Enhancement and Depletiontype, Photo Transistor, UJT

UNIT-III: Biasing and Stabilization

BJT Biasing: Need for Biasing, Operating Point, Load Line Analysis – DC and AC Load Lines, Stability factors S, S' and S", Biasing methods – Fixed bias, Collector-to-base bias and Self bias, Bias Compensation – Thermistor, Sensistor, Diode Compensation, Thermal Runaway, Thermal Stability, heat sinks. **FET Biasing**: Fixed method, self-bias method and

voltage divider method, Comparison of BJT and FET, Comparison between JFET and MOSFET

UNIT-IV: Small Signal Low Frequency Transistor Amplifier models

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h- parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, comparison of transistor amplifiers. **FET:** Generalized analysis of small signal model of FET, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

UNIT-V: Multivibrators

Bistable Multivibrator – Analysis and Design of Fixed Bias, Self-Bias Bistable Multivibrator, Collector Catching Diodes, Commutating Capacitors, Triggering of Binary Circuits, Emitter Coupled Bistable Multivibrator (Schmitt Trigger). Monostable Multivibrator – Analysis and Design of Collector Coupled Monostable Multivibrator, Triggering of Monostable Multivibrator, Applications of Monostable Multivibrator. Astable Multivibrator – Analysis and Design of Collector Coupled Astable Multivibrator, Application of Astable Multivibrator as a Voltage to Frequency Converter.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 2	2	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-
CO 4	3	3	2	-	-	-	-	-	-	-	-	-	3	-	1
CO 5	2	3	2	-	-	-	-	-	-	-	-	-	3	-	1

Correlation of COs with POs & PSOs:

Text Books:

- 1. Electronic Devices and Circuits Millman & Halkias, Tata McGraw Hill, Second Edition, 2007.
- 2. Electronic Devices and Circuits S. Salivahanan, N. Suresh Kumar, McGraw Hill, Third Edition, 2010.
- 3. Pulse, Digital and Switching Waveforms J. Millman and H. Taub, McGraw-Hill.

Reference Books:

- 1. Electronic Devices and Circuits Theory Robert L. Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition, 2009.
- 2. Electronic Devices and Circuits K. Lal Kishore, BS Publications, Fourth Edition, 2016.
- 3. Pulse and Digital Circuits A. Anand Kumar, PHI, 2005.