

# RAGHU ENGINEERING COLLEGE (Autonomous)

(Approved by AICTE, New Delhi & Permanently Affiliated to JNTUGV, Vizianagaram) NBA and NAAC 'A+' grade accredited Institute.

Dakamarri, Bheemili Mandal, Visakhapatnam – 531162,A.P. Phone: 08922-248001 <u>www.raghuenggcollege.com</u>

### **INSTITUTE VISION**

"Envisioning to be a world class technical institution by synergizing quality education with ethical values"

#### **INSTITUTE MISSION**

- To encourage training and research in cutting-edge technologies.
- To develop and strengthen strategic links with the industry.
- To kindle the zeal among the students and promote their quest for academic excellence.
- To encourage extra-curricular activities along with good communication skills.

### **QUALITY POLICY**

"RAGHU Engineering College underscores ethical values along with innovative teaching through an interactive, activity-based pedagogy; establishes the best of infrastructural facilities, inculcates engineering temper among the students through the use of the latest Information and Communication Technologies, and strives for an efficient, responsive and transparent administration in all areas"

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

#### **VISION**

"To produce Electrical and Electronics Engineers through quality education with exposure to state of art technology and innovation with ethical values"

### **MISSION**

- M1: Empowering students and professionals with state-of-art knowledge and Technological skills.
- M2: To prepare students for higher studies and entrepreneurship.
- M3: To impart essential skills of leadership, teamwork, communication and ethics among the students.

## PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

### • PEO 1:

### **Domain Knowledge:**

Graduates will have knowledge in basic science, mathematical tools and fundamental engineering stream with contemporary problem solving, critical analysis in Electrical and Electronics Engineering and its allied areas.

### • PEO 2:

### Communication Skills & Employability:

Graduates will have careers in the diversified sectors of electrical power industry, software industries and also encouraged for higher education and research.

### • PEO 3:

### Life Long Learning & Social Concern:

Graduates will be able to communicate effectively, adopt lifelong learning act with integrity and have inter personal skills needed to engage in, lead and nurture diverse teams with commitment to their ethical and social responsibilities.

### MAPPING OF MISSION STATEMENTS WITH PEOS

| MS/PEO | PEO 1 | PEO 2 | PEO 3 |
|--------|-------|-------|-------|
| M1     | 3     | 3     | 2     |
| M2     | 2     | 2     | 3     |
| M3     | 2     | 3     | 2     |

1-Slight, 2- Moderate, 3- Substantial

| PROGR    | AMME OUTCOMES                                                                                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graduate | s of Electrical and Electronics Engineering Will:                                                                                                                                                               |
| PO 1     | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                |
| PO 2     | Problem analysis:                                                                                                                                                                                               |
|          | Identify, formulate, review research literature, and analyze complex engineering problems                                                                                                                       |
|          | reaching substantiated conclusions using first principles of mathematics, natural sciences, and                                                                                                                 |
|          | engineering sciences.                                                                                                                                                                                           |
| PO 3     | Design/development of solutions:                                                                                                                                                                                |
|          | Design solutions for complex engineering problems and design system components or processes that                                                                                                                |
|          | meet the specified needs with appropriate consideration for the public health and safety, and the                                                                                                               |
|          | cultural, societal, and environmental considerations.                                                                                                                                                           |
| PO 4     | Conduct investigations of complex problems:                                                                                                                                                                     |
|          | Use research-based knowledge and research methods including design of experiments, analysis and                                                                                                                 |
|          | interpretation of data, and synthesis of the information to provide valid conclusions.                                                                                                                          |
| PO 5     | Modern tool usage:                                                                                                                                                                                              |
|          | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. |

| PO 6  | The engineer and society:                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------|
|       | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and                     |
|       | cultural issues and the consequent responsibilities relevant to the professional engineering practice.                 |
| PO 7  | Environment and sustainability:                                                                                        |
|       | Understand the impact of the professional engineering solutions in societal and environmental                          |
|       | contexts, and demonstrate the knowledge of, and need for sustainable development.                                      |
| PO 8  | Ethics:                                                                                                                |
|       | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. |
| PO 9  | Individual and team work:                                                                                              |
|       | Function effectively as an individual, and as a member or leader in diverse teams, and in                              |
|       | multidisciplinary settings.                                                                                            |
| PO 10 | Communication:                                                                                                         |
|       | Communicate effectively on complex engineering activities with the engineering community and with                      |
|       | society at large, such as, being able to comprehend and write effective reports and design                             |
|       | documentation, make effective presentations, and give and receive clear instructions.                                  |
| PO 11 | Project management and finance:                                                                                        |
|       | Demonstrate knowledge and understanding of the engineering and management principles and apply                         |
|       | these to one's own work, as a member and leader in a team, to manage projects and in                                   |
|       | multidisciplinary environments.                                                                                        |
| PO 12 | Life-long learning:                                                                                                    |
|       | Recognize the need for, and have the preparation and ability to engage in independent and life-long                    |
|       | learning in the broadest context of technological change.                                                              |

# PROGRAMME SPECIFIC OUTCOMES (PSOs)

**PSO 1:** On successful completion of the B. Tech. (EEE) Program, the graduates will be able to apply technical knowledge and usage of modern hardware & software tools related to Electrical and Electronics Engineering for solving real world problems.

**PSO 2:** On successful completion of the B. Tech. (EEE) Program, the graduates will be able to analyse, comprehend, design & develop Electrical subsystems/systems for a variety of engineering applications and thus demonstrating professional ethics and concern for societal wellbeing.

### MAPPING OF PEOS WITH POS AND PSOS:

| PEO/POs | PO- | PSO-1 | PSO- 2 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|--------|
|         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |       |        |
| PEO 1   | 3   | 3   | 3   | 3   |     |     |     |     |     |     |     |     | 3     | 3      |
| PEO 2   |     |     |     |     |     | 3   | 3   | 3   | 3   | 3   | 3   |     | 2     | 2      |
| PEO 3   |     |     |     |     |     |     |     |     | 3   | 3   |     | 3   | 2     | 2      |

1-Slight, 2- Moderate, 3- Substantial

|                               |                                                                                                                                                                                                                                                                                                                                  | SM, CSD , CSC , CSO,E                                                                                                                                               |                  |    |       |          |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-------|----------|
| Program<br>me<br>&Branch      | B.Tech. & CSE , CSM, CSD ,<br>CSC , CSO,EEE                                                                                                                                                                                                                                                                                      | Category                                                                                                                                                            | L                | T  | P     | Credit   |
| Prerequis                     | Nil                                                                                                                                                                                                                                                                                                                              | Nil Engineering 1 Science                                                                                                                                           |                  | 0  | 2     | 2        |
| ites                          |                                                                                                                                                                                                                                                                                                                                  | Science                                                                                                                                                             |                  |    |       |          |
| breakthrough<br>It aims to eq | e of this course is to familiarize students in innovation.  uip students with design thinking skills a ations for real-time problems.                                                                                                                                                                                            |                                                                                                                                                                     |                  |    |       | eas,     |
| Preamble                      | The main objectives of the course is                                                                                                                                                                                                                                                                                             | to make student                                                                                                                                                     |                  |    |       |          |
| Cou                           | irse Contents:                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                  |    |       |          |
| Unit-1                        | Introduction to Design Thinking: Introprinciples of Design, basics of design design design components. Principles of Design thinking, history of Design Thinking.                                                                                                                                                                | lot, line, shape, form as iples of design. Introduction                                                                                                             | on to            | Со | ntact | Hours: 9 |
| Unit-2                        | Design Thinking Process: Design think analyze, idea & prototype), implementi inventions, design thinking in social int thinking - person, costumer, journey madevelopment Activity: Every student priminutes, Every student can present designation or flow chart etc. Every student product development.                        | ng the process in driving<br>novations. Tools of design<br>ap, brainstorming, product<br>resents their idea in three<br>ign process in the form of                  | t                | Со | ntact | Hours: 9 |
| Unit-3                        | Innovation: Art of innovation, Differ creativity, role of creativity and Creativity to Innovation- Teams for impact and value of creativity. Activic creativity, Flow and planning from it value-based innovation.                                                                                                               | innovation in organizat<br>r innovation- Measuring<br>ty: Debate on innovation                                                                                      | ions-<br>the and | Со | ntact | Hours: 9 |
| Unit-4                        | Product Design: Problem formation, in Product strategies, Product value, Product specifications- Innovation towards productivity: Importance of modelling, how Explaining their own product design.                                                                                                                              | uct planning, product<br>luct design- Case studies                                                                                                                  | gn,              | Со | ntact | Hours: 9 |
| Unit-5                        | Design Thinking in Business Processes Business & Strategic Innovation, Desig redefine business – Business challenges Change, Maintaining Relevance, Extrer Standardization. Design thinking to me thinking for Startups- Defining and test Business Cases- Developing & testing p market our own product, About mainter startup. | In Thinking principles that<br>is: Growth, Predictability,<br>me competition,<br>et corporate needs- Design<br>ing Business Models and<br>prototypes. Activity: How | n<br>to          | Со | ntact | Hours: 9 |

startup.

|             | Total Hours: 45                                                                                                  |                           |  |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|
|             | Text Books:                                                                                                      |                           |  |  |  |  |  |  |  |
| 1           | 1 1. Tim Brown, Change by design, HarperBollins (2009)                                                           |                           |  |  |  |  |  |  |  |
| 2           | 2 2. Idris Mootee, Design Thinking for Strategic Innovation, 2013, John Wiley & Sons.                            |                           |  |  |  |  |  |  |  |
| 1           | Reference Books:                                                                                                 |                           |  |  |  |  |  |  |  |
| 1           | David Lee, Design Thinking in the Classroom, Ulysses press.                                                      |                           |  |  |  |  |  |  |  |
| 2           | Shrutin N Shetty, Design the Future, Norton Press                                                                |                           |  |  |  |  |  |  |  |
| 3           | William Lidwell, Universal Principles of Design- Kritinaholden, Jill Bu                                          | tter                      |  |  |  |  |  |  |  |
| 4           | Chesbrough.H, The Era of Open Innovation – 2013                                                                  |                           |  |  |  |  |  |  |  |
| 7           | Veb References :                                                                                                 |                           |  |  |  |  |  |  |  |
| 1           | https://nptel.ac.in/courses/110/106/110106124/                                                                   |                           |  |  |  |  |  |  |  |
| 2           | https://nptel.ac.in/courses/109/104/109104109/                                                                   |                           |  |  |  |  |  |  |  |
| 3           | https://swayam.gov.in/nd1_noc19_mg60/preview                                                                     |                           |  |  |  |  |  |  |  |
| Preambl     | After completion of the course, students will be able to                                                         |                           |  |  |  |  |  |  |  |
| A           | After completion of the course, students will be able to                                                         | BT Mapped (Highest Level) |  |  |  |  |  |  |  |
| CO 1        | CO 1 Define the concepts related to design thinking. Explain the fundamentals of Design Thinking and innovation. |                           |  |  |  |  |  |  |  |
| CO 2        | Apply the design thinking techniques for solving problems in various Ar                                          |                           |  |  |  |  |  |  |  |
| CO 3        | Analyse to work in a multidisciplinary environment                                                               | Analyze                   |  |  |  |  |  |  |  |
| <b>CO 4</b> | Evaluate the value of creativity                                                                                 | Evaluate                  |  |  |  |  |  |  |  |
| CO 5        | Formulate specific problem statements of real time issues                                                        | Evaluate                  |  |  |  |  |  |  |  |

**Mapping of Cos with POs and PSOs** 

|       | mapping of cos with 1 cs and 1 scs |      |      |      |      |     |     |     |     |     |     |     |     |       |      |
|-------|------------------------------------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-------|------|
| COs/P | PO-1                               | PO-2 | PO-3 | PO-4 | PO-5 | PO- | PS  | PSO-2 | PSO- |
| Os    |                                    |      |      |      |      | 6   | 7   | 8   | 9   | 10  | 11  | 12  | O-1 |       | 3    |
| CO 1  |                                    |      |      |      |      |     |     |     |     |     |     |     |     |       |      |
| CO 2  |                                    |      |      |      |      |     |     |     |     |     |     |     |     |       |      |
| CO 3  |                                    |      |      |      |      |     |     |     |     |     |     |     |     |       |      |
| CO 4  |                                    |      |      |      |      |     |     |     |     |     |     |     |     |       |      |
| CO 5  |                                    |      |      |      |      |     |     |     |     |     |     |     | ·   |       |      |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

| ASSESSMENT PATERN – THEORY |                     |                     |                |                 |                  |                |            |  |  |  |  |
|----------------------------|---------------------|---------------------|----------------|-----------------|------------------|----------------|------------|--|--|--|--|
| TEST                       | Remembering (K1)%   | Understanding (K2)% | Applying (K3)% | Analyzing (K4)% | Evaluating (K5)% | Creating (K6)% | Total<br>% |  |  |  |  |
| MID-1                      | 6                   | 9                   | 85             |                 |                  |                | 100        |  |  |  |  |
| MID-2                      | 6                   | 9                   | 85             |                 |                  |                | 100        |  |  |  |  |
| SEE                        | 10                  | 10                  | 80             |                 |                  |                | 100        |  |  |  |  |
| *± 3°                      | *± 3% may be varied |                     |                |                 |                  |                |            |  |  |  |  |