

RAGHU ENGINEERING COLLEGE

AUTONOMOUS (Approved by AICTE, New Delhi, & Permanently Affiliated to JNTU-GV, Vizianagaram) NBA & NAAC A+ grade Accredited institute

Dakamarri, Bheemili Mandal, Visakhapatnam Dist. – 531 162 (A.P.) Phone: +91-8922-248001, 248002, 9963981111, <u>www.raghuenggcollege.com</u>

INSTITUTE VISION

Envisioning to be a world class technical institution by synergizing quality education with ethical values.

INSTITUTE MISSION

- To encourage training and research in cutting-edge technologies.
- To develop and strengthen strategic links with the industry.
- To kindle the zeal among the students and promote their quest for academic excellence.
- To encourage extra-curricular activities along with good communication skills. QUALITY POLICY

RAGHU Engineering College underscores ethical values along with innovative teaching through an interactive, activity-based pedagogy, establishes the best of infrastructural facilities, inculcates engineering temper among the students through the use of the latest Information and Communication Technologies and strives for an efficient, responsive and transparent administration in all areas

Department of Civil Engineering

VISION

To become a pioneer in the field of civil engineering by providing high quality education and research to serve the public consistently with competitive spirit professional ethics.

MISSION

- M1: Provide quality knowledge and advance skills to the students in order to expertise theoretically and practically in the areas of civil engineering.
- M2: Improve the professional potentiality of the students and staff through educational programs to expand the knowledge in the field of civil engineering
- M3: Inculcate healthy competitive spirit towards the higher education and successful career in the field of civil engineering to serve the nation ethically.

PROGRAMME EDUCTIONAL OBJECTIVES(PEOs)

- PEO 1: Employ a practicing civil engineer in construction, design, testing, and allied fields.
- PEO 2: Engaging in self-directed learning research or undertaking higher studies in the rapidly changing civil engineering environment.

• PEO 3: Create new methods/processes to meet the needs of society with their civil engineering knowledge.

MAPPING OF MISSION STATEMENTS WITH PEOS

MS/PEO	PEO 1	PEO 2	PEO 3
MS 1	3	3	2
MS 2	3	3	2
MS 3	3	3	2

1-Slight, 2- Moderate, 3- Substantial

PROGRAM OUTCOMES								
	Graduates of Civil Engineering Will:							
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.							
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.							
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.							
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.							
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.							

PO 9	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.
	PROGRAM SPECIFIC OUTCOMES (PSOs)
PSO 1: <i>A</i>	Analyze, design and execute the civil engineering structures with good knowledge in
engineeri	ng, mathematics & basic sciences.

PSO 2: Follow the economic, environmental and safety factors involved in the construction industry.

PEO/PO	PO- 1	PO- 2	РО- 3	РО- 4	РО- 5	PO- 6	PO- 7	PO- 8	РО- 9	PO- 10	PO- 11	PO- 12	PSO- 1	PSO- 2
PEO 1	3	3	3	2	3	2	2	2	3	3	3	3	3	3
PEO 2	3	3	3	2	3	2	2	1	3	3	3	3	3	2
PEO 3	3	3	3	3	3	1	1	1	2	3	2	3	3	2

Mapping of PEOs with POs and PSOs

1-Slight, 2- Moderate, 3- Substantial

2301103 HYDRAULICS AND HYDRAULIC MACHINES									
(Civil Engineering)									
Programme	B. Tech & CE	Sem	Category	L	Т	Р	Credit		
&Branch									
Prerequisites	Fluid Mechanics	4	PC	3	0	0	3		
Course Objecti	ves:								
1. To unde	erstand and describe the dynamic	cs of fl	uid flow in o	pen channe	ls fo	r differ	rent		
flow regimes and conditions.									
2. To form	nulate and validate empirical rela	ationsh	ips to predict	flow behav	viori	n both	scaled		
models	and full-scale prototypes.								
3. To calcu	ulate and analyze the forces gen	erated	by fluid jets i	mpacting v	ariou	is type	s of		
vanes.									
4. To appl	y principles of fluid mechanics	to the d	lesign of effi	cient turbin	es tai	ilored t	to		
specific	hydraulic environments.								
5. To asse	ss and interpret the operational I	perform	nance of diffe	erent types of	of pu	mps u	nder a		
range of	f working conditions.								
Preamble:	The study of hydraulics and hy	draulic	machines is	fundament	al to	unders	standing		
	and designing systems that util	ize flui	id flow for pr	actical appl	icati	ons. T	his		
	course provides comprehensive	e insigl	nts into the be	ehavior of f	luids	in ope	en		
	channels, the principles of hyd	raulic s	similitude, the	e dynamics	of je	et impa	cts, and		
	the operation of various hydrau	ılic ma	chines such a	as turbines a	and p	oumps.			
Course Conten	ts:								
Unit-1	Open Channel Flow				Co	ntact H	lours: 9		
Uniform Flow	: Types of channels - Types of flo	ows - V	elocity distri	bution - Che	ezy's	and M	anning's		
formulae for u	niform flow - Most Economica	al secti	ons, Critical	flow: Spec	cific	energy	y-critical		
depth - comput	ation of critical depth								
Non-Uniform	Flow: Steady Gradually Varie	ed flow	-Dynamic e	quation, Ra	apidl	y vario	ed flow,		
hydraulic jump	, energy dissipation.				I				
Unit-2	Hydraulic Similitude				Co	ntact H	lours: 9		
Dimensional a	nalysis-Rayleigh's method and	d Bucl	kingham's pi	theorem-s	tudy	of H	ydraulic		
models - Geor	netric, kinematic and dynamic	simila	rities-dimens	sionless nur	nber	s - mo	odel and		
prototype relati	ons.				1				
Unit-3	Impact of Jets				Co	ntact H	lours: 9		
Hydrodynamic	force of jets on stationary and r	noving	flat, inclined	and curve	d vai	nes, jet	striking		
centrally and at	tip, velocity triangles at inlet an	d outle	t, expression	s for work c	lone	and ef	ficiency.		
Unit-4	Hydraulic Turbines				Co	ntact H	lours: 9		
Layout of a typ	bical Hydropower installation —	-Heads	and efficient	cies - classi	ficati	ion of	turbines.		
Pelton wheel -	- Francis turbine — Kaplan tu	urbine	- working,	working pr	opor	tions,	velocity		
diagram, work	done and efficiency. Draft t	tube –	-surge tanks	-unit and	spec	ific qu	antities,		
performance ch	naracteristics-geometric similarit	ty-Cavi	itation.		r				
Unit-5	Hydraulic Pumps				Co	ntact H	lours: 9		

Centrifugal Pumps: Pump installation details-classification-work done- Mano metric headminimum starting speed-losses and efficiencies-specific speed, - performance of pumpscharacteristic curves- NPSH- Cavitation.

Reciprocating Pumps: Introduction, classification, components, working, discharge, indicator diagram, work done and slip.

Total Hours: 45

Text	Books:						
1	Open Channel flow by K. Subramanya, Tata McGraw Hill Publishers						
2	Fluid Mechanics by Modi and Seth, Standard book house.						
3	Open Channel Hydraulics by V.T. Chow, Mcgraw Hill Publishers						
Refer	rence Books:						
1	Fluid Flow in Pipes and Channels by G.L. Asawa, CBS						
2	Fluid Mechanics and Machinery by C.S.P. OJHA, R. BERNDTSSON and P.N.						
	Chandramouli, Oxford Higher Education.						
3	Fluid Mechanics and Machinery by Md. Kaleem Khan, Oxford Higher Education.						
Web	Web References:						
1	https://nptel.ac.in/courses/105105203						
2	https://www.youtube.com/watch?v=JQmkQQVYnJU						

COURS	E OUTCOMES:	BT Mapped
Upon co	empletion of the course, students shall have ability to	(Highest Level)
CO 1	Explain the behavior of flow in open channels under various flow conditions.	L2
CO 2	Develop empirical relationships among the physical variables associated with the flow phenomenon in both model and prototype scenarios	L4
CO 3	Determine the hydrodynamic forces exerted by the fluid jet on flat, inclined, and curved vanes.	L4
CO 4	Design turbines considering diverse hydraulic conditions.	L4
CO 5	Evaluate the performance characteristics of pumps operating under various conditions.	L4

Mapping of Cos with POs and PSOs														
	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	-	-	-	-	-	-	-	-	-	-	3	3	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	3	3	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	3	3	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	3	3	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	3	3	-
1 – Slight,	1 – Slight, 2 – Moderate, 3 – Substantial													

ASSES	ASSESSMENT PATERN - THEORY									
TEST	Remembering (K2)%	Understanding (K2)%	Applying (K2)%	Analyzing (K2)%	Evaluating (K2)%	Creating (K2)%	Total%			
MID-	20	30	50				100			
1										
MID-	10	20	35	35			100			
2										
SEE	10	20	30	40			100			
*± 3%	may be varied									

